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We compared student learning from different modes of presenting classroom demonstrations to
determine how much students learn from traditionally presented demonstrations, and whether
learning can be enhanced by simply changing the mode of presentation to increase student
engagement. We find that students who passively observe demonstrations understand the underlying
concepts no better than students who do not see the demonstration at all, in agreement with previous
studies. Learning is enhanced, however, by increasing student engagement; students who predict the
demonstration outcome before seeing it, however, display significantly greater understanding.
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I. INTRODUCTION

Classroom demonstrations, a standard component of
ence courses in schools and universities, are commonly
lieved to help students learn science and to stimulate stu
interest. There is little doubt that well-performed demonst
tions achieve the latter objective; one study found that de
onstrations are among students’ favorite elements of in
ductory undergraduate physics courses.1 However, research
on student learning from demonstrations suggests that tr
tional demonstrations may not effectively help students gr
the underlying scientific concepts or recognize and cor
scientific misconceptions they may have.2–4

Science education research shows that most students
more from instruction that actively engages them rather t
from traditional methods in which they are passi
spectators.5 A number of approaches to instruction that a
designed to engage students more actively have there
been developed. Many of the most successful approa
consist of a set of carefully refined student activities d
signed to address research-identified student difficulties w
the material. These approaches specify both the instructi
methods and the content to be covered.6 For example,
Sokoloff and Thornton’s Interactive Lecture Demonstratio
~ILD !7 replace 1 h of lecture per week with a sequence
five to seven highly interactive, demonstration-bas
activities.7

In our study, we examined whether student learning fr
demonstrations, which were originally developed for tra
tional use, could be enhanced simply by varying the mode
presentation. We find that students who passively obse
835 Am. J. Phys.72 ~6!, June 2004 http://aapt.org/ajp
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demonstrations understand the underlying concepts no b
than students who do not see the demonstration at al
agreement with previous studies. Learning in enhanc
however, by increasing student engagement; students
predict the demonstration outcome before seeing it, howe
display significantly greater understanding.

II. DEMONSTRATION PEDAGOGIES

We examined three different modes of presentation:~1!
observe, the traditional approach to demonstrations, in wh
students watch the demonstration and hear the instruc
explanation,~2! predict, in which students record their pre
dictions of the demonstration outcome, observe the dem
stration, and hear the instructor’s explanation; and~3! dis-
cuss, in which students record predictions, observe
demonstration, discuss it with fellow students, and fina
hear the instructor’s explanation. We compared results fr
these three modes with those from a no-demonstration~con-
trol! group who did not see the demonstration at all.8

Predictions were elicited by asking the entire class a qu
tion and giving students a few minutes to think and reco
their predictions, without discussion. In the predict mode,
question was posed on a viewgraph together with a multip
choice list of possible answers, in a manner similar to
ConcepTest.9 Student predictions were recorded with a
electronic polling system.10 In the discuss mode, the questio
was posed in open-ended form on a worksheet, on wh
students recorded their predictions. After the students m
their predictions, they were shown the viewgraph used
predict mode and they reported the answer choice close
835© 2004 American Association of Physics Teachers
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their original prediction through the electronic polling sy
tem. The worksheets also prompted students to record
observation of the demonstration, explicitly compare th
predictions to their observations, and discuss the demon
tion with two or three other students.11

We performed this study in a 133-student introducto
physics course for premedical students. In addition to 2.
of lecture per week, the class met weekly for collaborat
study in groups of three or four, in sections of 15–20 s
dents per group, directed by teaching assistants. During
section meetings, we presented a series of se
demonstrations.12 Every week, each section saw that wee
demonstration in one of the three modes, or did not see
demonstration at all. Assignments of modes to sections
tated from week to week so that all students participated
each mode or in the control group roughly the same num
of times. Students who were absent from a section in a gi
week were also assigned to the control group.13

III. ASSESSMENT

At the end of the semester, we administered a fr
response test11 to assess student learning from the dem
strations. The test presented physical situations identica
the demonstrations, without mentioning that they had b
shown in class. We asked students to predict the outcom
the situation and explain the reason for their prediction. S
eral follow-up questions were designed to help determ
whether students understood the underlying physics.

Of the 133 students enrolled in the course, 122 comple
the test and responded to all questions, giving answers
displayed genuine effort. We analyzed those 122 tests
classified the responses to each question separately by
come ~correct or incorrect! and by explanation~correct or
incorrect!. Outcome correctness was based on the quest
that were identical to the demonstrations, and did not c
sider the correctness of answers to follow-up questions. T
different graders were involved in classifying explanatio
and some cross-checking of classifications was done to
sure consistency. Only complete, fully correct outcomes
explanations were classified as correct.

IV. RESULTS AND DISCUSSION

Table I shows the aggregate results of the end-of-seme
test for all seven demonstrations:14 ~1! the ratesR of correct

Table I. Rates of correct responses by outcome (Routcome) and explanation
(Rexpln) for each mode~combined data from all seven demonstrations!, and
average time required for each mode. Thep values indicate the statistica
significance of a particular rate of correct response compared to thno
demonstrationgroup; p,0.05 is considered statistically significant~Ref.
15!. Effect size indiceshoutcomeandhexpln are a measure of the difference
between a particular treatment group and theno demonstrationgroup, nor-
malized in a manner suitable for proportion data;h is calculated as specified
by Cohen~Ref. 16!. Values ofh between 0.2 and 0.5 are considered sm
andh values between 0.5 and 0.8 are considered medium.

Mode N

Outcomes Explanations
Time
~min!Routcome poutcome houtcome Rexpln pexpln hexpln

no demo 297 61% ¯ ¯ 22% ¯ ¯ 0
observe 220 70% 0.03 0.19 24% 0.64 0.05 11
predict 179 77% ,0.001 0.35 30% 0.04 0.18 13
discuss 158 82% ,0.0001 0.47 32% 0.02 0.23 21
836 Am. J. Phys., Vol. 72, No. 6, June 2004
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outcomes and correct explanations for each mode and fo
no-demonstration~control! group, ~2! p values ~statistical
significance testing15! and effect size indicesh ~normalized
measure of differences in proportions16! for Rmode2Rno demo

~the differences inR between treatment groups and the co
trol group!, and~3! the average class time required for ea
mode. Figure 1 displays the improvement in the rates
correct outcomes and explanations for each mode over th
rates for the control group, normalized to the rates for
control group. Especially noteworthy is that students in
observe group—those who saw the demonstration in tr
tional fashion—score only marginally better on explanatio
than students in the control group, and the difference is
statistically significant. The students in the observe gro
display no greater understanding of the underlying conce
than those who did not see the demonstration at all.

Increasing student engagement by asking students to
dict the outcome of the demonstration doubles both the n
malized improvement and the effect size index for outcom
and nearly quadruples them for explanations, without s
stantially increasing the time spent. On average, the pre
tion adds only 2 min to the time required to show and e
plain the demonstration. The additional improvement in
discuss mode over the predict mode is not large, especial
explanations, despite the additional 8 min per demonstrat

The overall rate of fully correct explanations is mode
even for predict and discuss~30% and 32%, respectively!,
perhaps indicating that there are limits to what students
learn from individual demonstrations. Many success
research-based strategies for teaching physics involve a
quence of activities designed to address particular stud
difficulties with the material.6 Finally, student learning from
certain demonstrations, even when performed interactiv
may be limited because the demonstrations themselves
not designed to address particular student difficulties. Kra3

has found that simply discussing certain traditional dem
strations has a limited impact on understanding. If so, de
onstrations that are designed to address difficulties sho
lead to a greater improvement in student learning. We c
ducted a follow-up study using the same protocol, in wh
one-third of the demonstrations were drawn from the IL
materials,7 and half were standard demonstrations. With t

Fig. 1. Improvement in rateR of correct outcomes~light gray! and expla-
nations ~dark gray! for each mode over theno demonstration~control!
group, normalized to the rate for the control group.

,

836Crouchet al.



at
ha

b
p
o

ne
i

a
u

th
e
a
tr

ac
di

e
r-
o

a
st
n
os
d

u
it

rt
n
tio
on
er
e
io
n

om
pr
ro
e
it

it
y

tra
di
m
a
p
vi
tin
it

te
a
ils
t

ity

nd
and
el

Col-

ing-

ton,

ail:

ss
hys.

n,’’

on-
er-

xten-
s.

e on

ys-

d E.
. J.

ra-

an
d E.
nt?’’

tten-
ce

f a
-
nt. In
ther
this
on.

mes-
ith
oves

ghts
h
n the
a

ing
m
-of-

-

cal-
the

d par-

the
e

ILD, the predict and discuss groups indeed display gre
improvement relative to the observe and control groups, t
with standard demonstrations.17

We also compared the rate of correct predictions made
students in class to the end-of-semester test results. The
dict and discuss groups differed greatly in the accuracy
students’ predictions: for all seven demonstrations combi
there were 26% correct predictions for the predict mode
comparison to 41% correct for the discuss mode. While m
ing predictions in class, students saw a list of possible o
comes in the predict mode, but did not see this list in
discuss mode until after making predictions. The more op
ended prediction process in the discuss mode may h
pushed students to think more carefully about the demons
tion. It is also possible that the presence of plausible distr
ers in predict mode increased the rate of errors in the pre
tions. Previous research by Steinberg and Sabella18 and
Rebello and Zollman19 gives mixed results in comparing th
difficulty of open-ended and multiple-choice question fo
mats, when the multiple-choice distracters are based on c
mon student misconceptions.

It is surprising that the discuss group performed only m
ginally better than the predict group on our end-of-seme
test, in spite of the higher rate of correct in-class predictio
the more open-ended process of prediction, the p
demonstration discussion between students, and the a
tional time spent. According to McDermott,5 for students to
discover and correct their own misunderstandings, instr
tion should elicit students’ ideas, then confront students w
errors in those ideas, and finally offer students the oppo
nity to resolve the errors. In this study, both the predict a
discuss modes elicit students’ ideas through the predic
stage and confront those who make incorrect predicti
with their errors through the demonstration itself. Howev
only the discuss mode offers students the opportunity to
plicitly resolve their misunderstandings through discuss
and writing. Perhaps for typical mechanics demonstratio
in contrast to activities specifically designed to address c
mon student difficulties, enhancement of learning comes
marily from securing students’ attention and exposing er
neous ideas through the prediction process. We ind
found17 that the discuss mode confers more benefit w
research-based ILD than with standard demonstrations.

V. CONCLUSIONS

Our results lead to two clear conclusions: First, desp
popular beliefs to the contrary, students learn little, if an
thing, from traditionally presented classroom demons
tions. Second, giving students a couple of minutes to pre
the outcome and record their predictions costs very little ti
and yields better understanding. Involving students by h
ing them predict the outcome of demonstrations is a sim
step toward increasing student engagement and impro
learning from demonstrations. We are presently investiga
the benefits of this prediction process in more depth w
research-based demonstrations.
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